近十多年来随着相关学科的理论、研究方法与技术的长足进步,以及ob欧宝体育富网入口分子筛与多孔材料的应用由吸附分离、催化与离子交换等传统领域向高新技术先进材料领域的拓展,人们对ob欧宝体育富网入口分子筛化学中的诸多规律与现象有了进一步的认识,特别是对结构-功能-合成的关系规律有了更系统、更深入的研究与认识。
ob欧宝体育富网入口分子筛材料广泛地应用于石油炼制、能源化工及环境保护等领域,是解决能源与环境问题的关键性材料。根据传统分子筛的定义,分子筛是由TO4四面体之间通过共享顶点而形成的三维四连接骨架。骨架T 原子通常是指Si、Al 或P等原子,在少数情况下是指其他原子,如B、Ga、Be 等。分子筛的孔道是由n 个T 原子所围成的环,即窗口所限定的。除六元环等小的孔道体系外,分子筛孔道还包括八元环、九元环、十元环、十二元环、十四元环、十八元环和二十元环以及二十元环以上。通常,根据组成孔道的环的大小,可以将分子筛描述为小孔、中孔、大孔和超大孔分子筛。小孔分子筛,如LTA、SOD和GIS型分子筛,它们的孔道窗口由8 个TO4四面体围成,孔径约为4 Å;中孔分子筛,如MFI,其孔道窗口由10个TO4四面体围成,孔径约为5.5 Å;大孔分子筛,如FAU、MOR 和*BEA,它们的孔道由12 个TO4四面体围成,孔径约为7.5Å;围成孔道窗口的T原子数超过12的分子筛,则被称为超大孔分子筛。分子筛中孔道的环多为八元环、十元环和十二元环。关于超大孔分子筛的报道还较少,目前分子筛的孔道最大环数为30(ITQ-37)。孔道体系可以是一维、二维或三维的,即孔道向一维、二维或三维方向延伸。根据国际分子筛学会(IZA)结构分会的定义,目前有239 种分子筛结构已经被确认。
20 世纪40 年代,Barrer开始尝试水热法合成Zeolite,随后UCC 的Milton和Breck 等成功使用温和的水热条件(约100 ℃和自生压力)制备出了A 型ob欧宝体育富网入口与X 型ob欧宝体育富网入口以及后来的Y 型ob欧宝体育富网入口,这被认为是现代经典水热合成法制备ob欧宝体育富网入口分子筛的开始。
水热合成是指在一定温度(100~1000 ℃)和压力(1~100 MPa)条件下利用水溶液中的反应物进行特定化学反应的合成。水热合成一般在特定类型的密闭容器或高压釜中进行。合成硅铝ob欧宝体育富网入口的基本起始物料有硅源、铝源、金属离子、碱、其他矿化剂和水。有时某些添加剂如有机模板剂和无机盐类对晶化会产生重要的作用。影响合成的关键因素包括投料硅铝比、碱度、模板剂的选择等。常规水热合成硅铝ob欧宝体育富网入口是在强碱体系下实现的,而氟离子的引入可以将硅铝ob欧宝体育富网入口晶化体系拓展到中性和酸性条件。水热合成法中溶剂水可以用其他有机溶剂替代,即溶剂热合成。
溶剂热合成中可选择的有机溶剂种类繁多,性质差异又很大,为合成提供了更多的选择和机会。在合成过程中,溶剂不仅为合成反应提供一个场所,也会使反应物溶解或部分溶解,生成溶剂合物。溶剂化过程会影响反应物活性物种在液相中的浓度、存在状态以及聚合态分布和化学反应速率,更重要的是,会影响反应物的反应性与反应规律,甚至改变反应过程。
我国科研人员徐文晹等在20 世纪90年代初最早发明了干凝胶转化(dry gel conversion,DGC)制备高硅及全硅分子筛的方法。2004 年,离子热合成法作为一种全新的概念被引入分子筛合成体系中。英国的Morris 等首先提出该方法,他们采用咪唑类化合物的离子液体作为反应溶剂兼模板剂分子,成功合成了多种磷酸铝及金属磷酸铝骨架的分子筛结构。与传统的水热合成法或者溶剂热合成法合成分子筛相比,离子热合成法可以在接近常压状态下进行,从而减少了高压反应带来的危险,并且降低了投资成本。但是离子热合成法合成分子筛的成果还主要集中在磷酸铝分子筛,合成应用更为广泛的硅铝分子筛仍然需要很多的研究工作。